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Abstract

Purpose: We quantified the effects of Florida’s prescription drug monitoring program and pill 

mill law on high-risk patients.

Methods: We used QuintilesIMS LRx Lifelink data to identify patients receiving prescription 

opioids in Florida (intervention state, N: 1.13 million) and Georgia (control state, N: 0.54 million). 

The preintervention, intervention, and postintervention periods were July 2010 to June 2011, July 

2011 to September 2011, and October 2011 to September 2012. We identified 3 types of high-risk 

patients: (1) concomitant users: patients with concomitant use of benzodiazepines and opioids; (2) 

chronic users: long-term, high-dose, opioid users; and (3) opioid shoppers: patients receiving 

opioids from multiple sources. We compared changes in opioid prescriptions between Florida and 

Georgia before and after policy implementation among high-risk/low-risk patients. Our monthly 
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measures included (1) average morphine milligram equivalent per transaction, (2) total opioid 

volume across all prescriptions, (3) average days supplied per transaction, and (4) total number of 

opioid prescriptions dispensed.

Results: Among opioid-receiving individuals in Florida, 6.62% were concomitant users, 1.96% 

were chronic users, and 0.46% were opioid shoppers. Following policy implementation, Florida’s 

high-risk patients experienced relative reductions in morphine milligram equivalent (opioid 

shoppers: −1.08 mg/month, 95% confidence interval [CI] −1.62 to −0.54), total opioid volume 

(chronic users: −4.58 kg/month, CI −5.41 to −3.76), and number of dispensed opioid prescriptions 

(concomitant users: −640 prescriptions/month, CI −950 to −340). Low-risk patients generally did 

not experience statistically significantly relative reductions.

Conclusions: Compared with Georgia, Florida’s prescription drug monitoring program and pill 

mill law were associated with large relative reductions in prescription opioid utilization among 

high-risk patients.
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1 | INTRODUCTION

Injuries and deaths from opioids have soared over the past 2 decades.1–5 In 2016, an 

estimated 64,000 Americans died from drug overdoses, with most succumbing to 

prescription opioids, heroin, or illicit fentanyl.6 The epidemic has also manifest in various 

ways, ranging from strains on the foster system7 and large increases in neonatal abstinence 

syndrome8 to local outbreaks of HIV and hepatitis C.9 The epidemic is so far-reaching that 

drug overdoses are now 1 of the leading causes of death among Americans under 50 years of 

age,10,11 despite evidence suggesting the prevalence of pain has not substantially changed.
12,13

Many policies have been developed to address opioid-related morbidity and mortality.14–18 

In the United States, states have increasingly implemented prescription drug monitoring 

programs (PDMPs) and “pill mill” laws.16,17,19,20 Prescription drug monitoring programs 

are databases that aggregate information about individuals’ controlled substance prescribing 

history; they can be queried by health-care providers and certain stakeholders.17,21,22 In 

contrast, pill mill laws establish regulatory oversight of pain management clinics—such as 

creating penalties for those who do not comply with state registration, ownership 

requirements, or limitations on physician dispensing—to mitigate problematic prescribing 

practices such as cash-for-pill exchanges.23

Many studies suggest that these policies can reduce prescription opioid utilization16,20,24,25 

and deaths.26 However, some studies fail to identify such impact.27–30 Primarily focused on 

Florida given its role as an epicenter of nonmedical prescription opioid use, our work found 

that Florida’s PDMP and pill mill law were associated with modest declines in overall 
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opioid sales20 and that these declines were concentrated among the highest prescribing 

physicians.25

Previous studies do not answer how policies may affect patients at differing levels of risk of 

addiction and death. Not all opioid users have identical likelihood of experiencing morbidity 

or mortality, and clinical characteristics of patients, such as their combined use of 

benzodiazepines and opioids, or long-term high-dose opioid use, have been consistently 

associated with a substantially elevated risk.31–35 In this study, we sought to (1) describe the 

characteristics of high-risk patients and their counterparts in Florida and (2) compare opioid 

utilization in Florida with Georgia to quantify the effect of Florida’s PDMP and pill mill law 

on their opioid utilization by patients’ risk status.

2 | METHODS

2.1 | Data

We used QuintilesIMS LifeLink Longitudinal Prescription (LRx) data, which consists of 

anonymized, individual-level prescription drug dispensing data. The database includes 

payer, patient, and prescriber information derived from approximately 75% of all retail 

prescription transactions in the United States. Each transaction record includes the National 

Drug Code, quantity dispensed, days supplied, quantity dispensed, zip code of the 

dispensing pharmacy, encrypted prescriber identifiers, patient sex, and date of birth.

2.2 | Time segments and group derivation

We included a 12-month pre- and postintervention observation period. The preintervention 

period was from July 2010 to June 2011. The policy implementation period extended from 

July 2011 (pill mill law) to September 2011 (PDMP). The postintervention period ranged 

from October 2011 through September 2012.

We identified approximately 2.76 million individuals who (1) lived in Florida or Georgia, (2) 

had at least 1 pharmacy claim each within the first and last 3 months of the study period, and 

(3) filled prescriptions from stores reporting data to QuintilesIMS within the first and last 3 

months. After excluding records outside of the study period and records with missing state 

of prescriber, 2.65 million patients remained. We further restricted to patients with at least 1 

nonextreme opioid prescription (not among top 1% prescriptions in morphine milligram 

equivalents [MMEs], days supplied, or quantities dispensed) during the pre- or 

postimplementation periods. A total of 1.67 million patients reflecting about 12 million 

opioid prescriptions were included in our study (Florida/Georgia: 1.13/0.54 million 

patients).

We defined 3 types of patients at elevated risks of adverse events.36 First, we defined 

“concomitant users” as patients filling more than 30 days (not necessarily continuous) of 

concomitant opioids and benzodiazepines in a year. The coadministration of 

benzodiazepines and opioids may lead to more adverse events, with benzodiazepines 

associated with ~30% of overdose deaths involving prescription opioids.34,35 Second, we 

defined “chronic users” as those consuming more than 100 MMEs per day for more than 90 

consecutive days, as there is a strong dose-response association between the opioid dose and 
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the overdose death risk.31,33 Finally, we defined “opioid shoppers” as patients visiting >3 

pharmacies and >3 prescribers to acquire opioids during any 90-day period because using 

multiple concurrent prescribers and pharmacies is related to a 600% increase in opioid 

overdose.37,38 Patients not meeting the criterion were considered “low-risk” by the 

definition. These 3 groups were not mutually exclusive. Total prescriptions were not used as 

a measure of high-risk as they do not account for product or dose.

2.3 | Outcomes

We examined 4 outcomes, derived on a monthly basis and summarized by risk group and 

state. First, we calculated the average MME per transaction. Risk of opioid-related 

morbidity and mortality increases as MME per transaction increases.39 Second, we 

computed total opioid volume across all prescriptions by using MMEs. This measure 

standardizes opioid prescriptions by accounting for differences in molecules, quantity, and 

strength of doses.35,40 Third, we quantified average days supplied per transaction given 

many opioids are ultimately diverted.41,42 Fourth, we examined the total number of opioid 

prescriptions dispensed.

We also examined the overlap of 3 high-risk groups (concomitant users, chronic users, and 

opioid shoppers) and the degree to which total opioid volume was concentrated within these 

groups. In addition, we compared the prevalence of 3 high-risk groups between 2 states.

2.4 | Analysis

We first described the characteristics of high-risk patients, including age, sex, prevalence, 

and overlap with other high-risk groups; persistence from the pre- to postperiod; and chronic 

disease score. The chronic disease score, using pharmacy claims only, is a validated measure 

of morbidity and has been linked to patient’s health status, expenditures, and death.43,44 We 

used a χ2 test to examine whether being a high-risk patient by 1 definition in the 

preintervention period was more likely to (1) be a high-risk patient by another definition in 

the preintervention period and (2) be a high-risk patient by all 3 definitions in the 

postintervention period.

We used a comparative interrupted time series approach to quantify the impact of Florida’s 

laws on our outcomes while accounting for secular trends as well as the autocorrelated 

nature of the data.20,25,45–47 We used Georgia as a control state because of its geographical 

proximity, the absence of similar policy implementation during the study period, and its 

similarity in baseline opioid utilization trends (of note, Georgia’s PDMP became operational 

in 2013).

Our unit of analysis was a monthly measure derived by aggregating all of the transactions 

associated with a specific group in a given state during that month. For example, we 

aggregated all transactions that occurred in December 2011 from all concomitant users who 

resided in Florida to obtain total opioid volume of concomitant users in Florida in December 

2011. We had 25 observations for each outcome and patient subgroup in each state: 12 

observations each in the pre- and postimplementation period and 1 aggregate observation 

from the 3 policy-intervention months. We used linear regression to evaluate the comparative 

changes in the outcomes of the interest before and after the implementation of Florida’s 
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PDMP and pill mill legislation. We included a state indicator (FL or GA) in the model, a 

period indicator (pre or post), a month indicator, a postintervention month indicator, an 

interaction term of the state and month, and 2 additional interaction terms. The first 

interaction term was the interaction between the state and period indicator which reflected 

the effect of the policies on the level of the outcome. The second was the interaction 

between state and postintervention month indicator, which represented the effect of the 

policies on the rate of change (trend). Six models were executed for each outcome (1 for 

each patient subgroup). We tested for autocorrelation across time by using the generalized 

Durbin-Watson test and included the appropriate autocorrelation orders in the final models. 

We also evaluated the impact of the policy implementation by calculating the model-based 

predicted outcomes, assuming the policies were not implemented. We presented the 

accumulative difference between the observed and predicted at the 6th and 12th month post 

intervention. The equation and detailed information are provided in Online Appendix 1.

The R2 was higher than 0.80 across all models, a reflection of large sample sizes and little 

variation in the outcomes of interest over time. All analyses were performed by using SAS 

version 9.4 (proc autoreg command with nlag function).

3 | RESULTS

3.1 | Characteristics of high-risk patients

Approximately 7% (6.6%) of the 1.13 million Florida individuals in the prepolicy period 

were concomitant users, 2.0% were chronic users, and 0.5% were opioid shoppers (Table 1). 

Among 0.54 million Georgia individuals, the prevalence was lower at 4.4%, 1.2%, and 

0.4%, respectively. More than three-fifths of concomitant users (64.8%) and opioid shoppers 

(60.4%) were female, while slightly more chronic users (51%) were male. Concomitant 

users were the oldest (mean age: 54.4 years), while chronic users were slightly younger 

(50.8 years) and opioid shoppers were the youngest (41.9 years).

3.2 | Opioid concentration and prevalence of high-risk patients

The concentration of total opioid prescriptions among high-risk patients decreased by 

approximately 17% from the prepolicy to the postpolicy period (Table 1). For example, the 

proportion of opioid prescriptions accounted for by high-risk patients ranged from 40.2% 

among chronic users to 3.3% among opioid shoppers in the prepolicy period; these numbers 

decreased to 33.2% and 2.7% in the postpolicy period. In the prepolicy period, the 

concentration of total opioid volume within high-risk patients was somewhat lower, ranging 

from 23.3% (chronic users) to 2.4% (opioid shoppers); this also declined following policy 

implementation, ranging from 19.4% to 1.8%.

The overlap across the 3 high-risk groups was low; for example, the highest was 45% of 

chronic users being concomitant users. In addition, approximately two-thirds of concomitant 

users (62%) and chronic users (59%) remained similarly high-risk following policy 

implementation, while fewer (25%) opioid shoppers continued to be classified as such 

following policy implementation. Compared with low-risk patients, high-risk patients by 1 

definition (ie, chronic users) in the preintervention period were statistically significantly 
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more likely to be high-risk patients by another definition (ie, concomitant users) in the same 

period (Online Appendix 2; P < .05) and stay high-risk by all 3 definitions (ie, concomitant, 

chronic, and opioid shoppers) in the postintervention period (Online Appendix 3; P < .05). 

For example, 38% of opioid shoppers were also concomitant users compared with just 6% of 

nonopioid shoppers.

Prevalence of high-risk patients by state and period are presented in Figure 1. The 

prevalence of concomitant users slightly increased from 6.62% in the prepolicy to 6.66% in 

the postpolicy period in Florida and statistically significantly increased from 4.44% to 

4.89% in Georgia. Prevalence of opioid shoppers decreased statistically significantly in both 

states, but the magnitude was larger in Florida (0.08% in Florida vs 0.06% in Georgia). The 

prevalence of chronic users decreased significantly from 1.96% to 1.81% in Florida but 

remained stable in Georgia (1.22% to 1.23%).

Characteristics of nonhigh-risk patients from Florida are presented in Online Appendix 4.

3.3 | Effect of policy changes by types of patient risk

Table 2 demonstrates the impact of Florida’s policies on high-risk patients, as compared 

with Georgia. Across 3 high-risk groups and 4 outcomes, comparative changes in levels pre- 

and postpolicy implementation were generally statistically significant among chronic users, 

but not concomitant users and opioid shoppers. By contrast, clinically significantly 

comparative reductions in monthly trends in 3 of the 4 outcomes were observed across all 3 

high-risk groups. For volume-based outcomes such as total opioid volume and the number of 

opioid prescriptions, the policy effects were largest for concomitant and chronic users and 

were smaller for opioid shoppers. For example, there was a monthly relative decline in total 

opioid volume of 2.61 kg/month (95% confidence interval [CI], −1.67 to −3.56) among 

concomitant users, 4.58 kg/month (CI, −5.41 to −3.76) among chronic users, and 0.55 kg/

month (CI, −0.44 to −0.65) among opioid shoppers. By contrast, each of the 3 high-risk 

groups experienced a similar, statistically significant comparative reduction in MME. Across 

3 nonhigh-risk groups, generally no statistically significant effects on the level or trend were 

identified across all outcomes examined (Online Appendix 5).

3.4 | Observed versus predicted outcomes without policy implementation

Table 3 shows the difference between the observed and the predicted outcomes had Florida’s 

policies not been implemented. There was a greater difference between the observed and 

predicted outcomes during the second 6 months after the policy changes than during the first 

6 months. For example, during the second 6 months, the observed total opioid volume was 

34.9% less and 6.2% more than the predicted values among concomitant and 

nonconcomitant users, respectively. We estimate that at 1 year, the policies were associated 

with a 25% reduction in opioid volume among concomitant users, a 40.7% reduction among 

chronic users, and a 63.0% reduction among opioid shoppers; they were also associated with 

a 16.2% reduction in opioid prescriptions among concomitant users, a 24.7% reduction 

among chronic users, and a 42.4% reduction among opioid shoppers. Smaller reductions (eg, 

a 0.5% reduction among nonopioid shoppers on opioid prescriptions) or sometimes 

increases (eg, a 12.9% increase among chronic users on total opioid volume) were observed 
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to be associated with the policies at 1 year among nonhigh-risk patients (Online Appendix 

6).

4 | DISCUSSION

Among 1.1 million patients filling a prescription opioid in Florida prior to policy 

implementation, 6.6% were concomitant users, 2.0% were chronic users, and 0.5% were 

opioid shoppers; the prevalence of these 3 high-risk groups was lower in Georgia. Across all 

3 high-risk groups, these policies were associated with statistically significant comparative 

reductions in monthly trends of morphine equivalent dose, total opioid volume, and number 

of opioid prescriptions. In general, no statistically significant effects on nonhigh-risk 

patients were observed.

In so far as Florida’s policies were designed to target those at greatest risk of opioid-related 

adverse events, our study suggests that the policies had their intended effect. However, the 

impacts seemed to be larger among high-risk patients than high-risk prescribers. For 

example, about 80% of high-risk prescribers remained so following policy implementation 

while at most 60% of high-risk patients persisted. Similarly, we estimate larger policy effects 

among high-risk patients than high-risk prescribers at 1 year as well; for example, we 

estimate a 25% to 70% reduction in total opioid volume among high-risk patients compared 

with a 13.5% reduction among high-risk prescribers.25 Further study is necessary to evaluate 

these differential effects.

Prescription drug monitoring programs and pill mill laws are rapidly evolving state-level 

policies to address prescription opioid abuse and diversion. Prescription drug monitoring 

programs have been implemented in all but 1 state, representing nearly complete policy 

diffusion, with particularly rapid uptake during the last 15 years. Because PDMPs vary 

extensively across states, they present a natural policy-making experiment, for which 

rigorous evaluation has only recently begun.16,20,25,26,29 For example, states house PDMPs 

in different agencies (eg, health department and pharmacy board), require PDMPs to capture 

information about different drug schedules, and vary in the extent to which law enforcement 

officials can access their data.48,49

One of the more controversial—and heterogeneous—aspects of PDMPs is whether 

prescribers are legally required to register with and subsequently query them. Approximately 

half of the states do not have such registry requirement; the other states vary in requiring 

prescribers and/or dispensers to enroll.50 Importantly, registration does not guarantee use of 

the PDMP, which is why 30 states now require prescribers to query the PDMP in at least 

some circumstances (eg, when initially prescribing an opioid; for prescriptions related to 

noncancer chronic pain).51 Evaluations of these mandates, while early, suggest that they 

increase use of PDMPs and decrease prescribing of opioids, at least among certain groups of 

providers.52,53 Because these mandates were generally implemented simultaneously as other 

measures intended to address prescription drug abuse, it is difficult to ascertain their 

individual contribution to any reduction in morbidity and mortality. Opinions also differ 

regarding whether PDMPs and other policies to reduce nonmedical opioid use may have 
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unintended consequences such as stimulating the use of heroin or illicit fentanyl.54,55 This is 

a complicated issue, and further research is necessary.

Our study has several limitations. First, given the lack of diagnosis and death information, 

we cannot assess whether transactions were clinically indicated or associated with opioid-

related morbidity or mortality. Second, we could not evaluate the independent effects of 

Florida’s PDMP and pill mill laws as they were enacted within 3 months of each another. In 

addition, activities related to the implementation of these policies (eg, increased law 

enforcement activity and media coverage of pill mill closures) are not specifically accounted 

for, although they may have influenced our findings. Third, PDMPs are heterogeneous in 

their structure and function, and our findings may not be generalizable to all PDMPs.19 

Fourth, our dataset contained only the retail prescription claims; those occurring in 

institutional settings such as hospitals, or through direct physician dispensing (partially 

banned by the pill mill law starting in July 2011), were not captured. The absence of data 

capturing physician dispensing may lead us to underestimate the effect of Florida’s policies. 

Fifth, people can cross the state lines to obtain opioid prescriptions, although in prior 

analyses, we found that fewer than 1% of opioid prescriptions by Florida residents were 

filled in Georgia. Sixth, we did not evaluate whether these policies had a differential impact 

on different types of opioids. Seventh, we did not examine whether the policies have a 

differential effect on cash versus noncash transactions. Lastly, we used 1 set of thresholds to 

examine high-risk opioid patients; additional analyses might examine the effect of PDMPs 

and pill mill laws by using alternative thresholds.

5 | CONCLUSIONS

Despite the concerted efforts of many stakeholders, morbidity and mortality continue to 

accrue from prescription and illicit opioids. Prescription drug monitoring programs and pill 

mill laws remain an important component of states’ policies to address the nonmedical use 

and diversion of prescription opioids. While there is evidence from an increasing number of 

sources that state’s policies have a positive impact on both opioid prescribing as well as 

related injuries, addiction, and deaths, evaluations of specific state’s interventions will 

continue to be important given the heterogeneity of these programs across states and their 

continued evolution.
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KEY POINTS

• Among 1.1 million patients filling a prescription opioid in Florida prior to 

policy implementation, 6.6% were concomitant users, 2.0% were chronic 

users, and 0.5% were opioid shoppers.

• The concentration of total opioid prescriptions among high-risk patients 

decreased by approximately 17% from the prepolicy to the postpolicy period.

• Compared with Georgia, Florida’s prescription drug monitoring program and 

pill mill law were associated with large relative reductions in prescription 

opioid utilization among 3 high-risk opioid groups.

• There were generally no statistically significant policy effects on nonhigh-risk 

patients.
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FIGURE 1. 
Policy impact on the prevalence of high-risk patients by period and state
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